Lecture 7: Birth-death models

Fugo Takasu
Dept. Information and Computer Sciences
Nara Women's University
takasu@ics.nara-wu.ac.jp

7 June 2006

1 A deterministic model of birth and death

Consider a population and imagine that each individual gives birth to an offspring or dies according a certain rule. Let the population size be N and we focus on the dynamics of N as a function of time t. If both birth and death occur at a constant rate, say, β and δ, respectively, the net change of the population size N within a short time interval Δt is given as

$$
\Delta N=N(t+\Delta t)-N(t)=\beta \Delta t N-\delta \Delta t N
$$

because there are N individuals and each individual gives birth and dies with the rate $\beta \Delta t$ and $\delta \Delta t$ respectively.

By arranging this equation and letting $\Delta t \rightarrow 0$ we have a differential equation

$$
\begin{equation*}
\frac{d N}{d t}=(\beta-\delta) N \tag{1}
\end{equation*}
$$

The solution is

$$
\begin{equation*}
N(t)=N(0) \exp [(\beta-\delta) t] \tag{2}
\end{equation*}
$$

where $N(0)$ is initial population size.
It is obvious that the population size N exponentially increases when the birth rate exceeds the death rate, $\beta>\delta$, and it exponentially decreases toward zero when $\beta<\delta$. If we take the logarithm of $N(t)$, it increases or decreases linearly with time t and the slop is given by $\beta-\delta$ because $\log N(t)=\log N(0)+(\beta-\delta) t$.

This is a deterministic model of birth and death. $\beta-\delta$ is the net rate of increase per individual. As in the previous deterministic immigration-emigration model the population size should be interpreted as "density", not the number of individuals as non-negative integer. The difference is that α and β in the immigration-emigration model are now replaced with βN and δN where N is the population size as density. We now want to derive a stochastic model that corresponds to this deterministic model.

2 A stochastic model

We assume that the birth rate β is the probability that an individual gives birth to an offspring and that the death rate δ the probability that the individual dies within a unit time. We also assume that within a short time interval Δt, only one of the following three cases occurs mutually exclusively; an individual 1) gives birth to an offspring, 2) dies, or 3) neither gives birth nor dies. This stochastic birth-death process could be implemented using the algorithm

For all individuals repeat

1) Give birth to a new individual with probability $\beta \Delta t$.
2) Remove this individual with probability $\delta \Delta t$.

Here is an outline of the program that simulates this stochastic process.

```
#define BIRTH_RATE 0.03
#define DEATH_RATE 0.02
#define DT 0.1
#define INTV 10
main()
{
    int pop_size, new_indiv, dead_indiv, i, step;
    double prob_birth, prob_death, ran;
    prob_birth = BIRTH_RATE* DT;
    prob_death = DEATH_RATE * DT;
    pop_size = 10; /* initial population size */
    for(step=0; step<5000; step++){ /* advance the time by DT */
            if( step%INTV == 0) printf("%d ", pop_size);
            new_indiv = 0;
            dead_indiv = 0;
            for(i=1; i<=pop_size; i++){ /* for all individuals */
                ran = ran2(seed);
                if( ran < prob_birth )
                new_indiv++;
            else if( prob_birth < ran && ran < prob_birth + prob_death )
                    dead_indiv++;
        } /* end of for i */
        pop_size += (new_indiv - dead_indiv) ;
    } /* end of for step */
}
```


3 Waiting time

As in the stochastic immigration-emigration model, it would be better to introduce waiting time to run simulation. Either birth or death takes place with the rate $\beta N+\delta N$, and waiting time to the next event (either birth or death) w is given as an exponential distributed random variable those p.d.f is

$$
f(w)=\lambda \exp [-\lambda w]
$$

where $\lambda=\beta N+\delta N$. A birth occurs with the conditional probability $\beta N /(\beta N+\delta N)$ and a death likewise. For the sake of calculating average population size later, it is convenient to output the population size N with an equal time interval $\Delta T=1$.

4 Simulation

1. Write a C program to carry out simulation of the stochastic birth-death process. In the simulation we start with an initial population size, say, $n(0)=10$ and repeat the dynamics with the same initial condition for several times. The dynamics of the population size should be written into a file. The data should be separated by a white space and write them in one line in the following format (assuming the time interval is 1).

Trial 1:	$n(0)$	$n(1)$	$n(2)$	\cdots	$n(100)$
Trial 2:	$n(0)$	$n(1)$	$n(2)$	\cdots	$n(100)$
Trial 3:	$n(0)$	$n(1)$	$n(2)$	\cdots	$n(100)$
\vdots					

2. Using Mathematica, draw the simulated dynamics both in normal and logarithmic scale to see how the population size changes. Observe that in some trial the population size N can become zero at some time t and and hereafter it remains zero. Consider why the population size N remains zero once it reached zero.

Stochastic birth－death process by C

```
In[114]:= << Graphics`Graphics`
In[115]:= << Graphics`MultipleListPlot`
```



```
Out[116]= /Users/takasu/home/情報科学科の仕事/講義/平成 1 8 年度/
        H18 大学院講義/Birth-death model/birth-death/build/Development
In[121]:= data = ReadList["data_eq_intv", Real, RecordLists ? True];
    Length[data]
Out[122]= 50
In[123]:= ListPlot[data[[1]], PlotJoined ? True]
```



```
Out［123］＝－Graphics－
In［124］：＝MultipleListPlot［data，PlotJoined ？True，SymbolShape ？None，PlotRange ？All］
```



```
Out［124］＝－Graphics－
```

In[125]:= MultipleListPlot[data, PlotJoined ? True,
SymbolShape ? None, PlotRange ? $\{\{0,500\},\{0,50\}\}]$

Out[125]= - Graphics -
In[132]:= MultipleListPlot[Log[data], PlotJoined ? True, SymbolShape ? None, PlotRange ? \{All, All\}]

Out[132]= - Graphics -

In[136]:= Fit[Take[Log[data[[1]]], -100], \{1, t\}, t]
Out[136]= 4.69288+0.00665416t

```
In[138]:= Do[
tmp = Take[ Log[data[[i]]], - 20];
regress = Fit[tmp, {1, t}, t] ;
Print[regress], {i, 1, Length[data]}
    ]
    5.21152+0.00992187t
    3.90098+0.0190778t
    7.26946 + 0.0106285t
    6.76606+0.010213t
    Indeterminate
    1.2639+0.0195746t
    5.60861+0.0105491t
    7.20476 + 0.00974918t
    4.38565+0.0179139t
    6.6896 + 0.00953472t
    6.61389 +0.00919948t
```

