
Lecture 3: Immigration-emigration models

Fugo Takasu
Dept. Information and Computer Sciences

Nara Women’s University
takasu@ics.nara-wu.ac.jp

10 May 2006

1 A deterministic model of immigration and emigration

Consider a population and imagine that immigration into and emigration out of the population
occur. Let the population size be N and we focus on the dynamics of N as a function of time t.
If both immigration and emigration occur at a constant rate, say, α and β, respectively, the net
change of the population size N during a short time interval ∆t is given as

∆N = N(t + ∆t) − N(t) = α∆t − β∆t

Arranging this equation and letting ∆t → 0 we have an ordinary differential equation ODE

dN

dt
= α − β (1)

The solution is
N(t) = (α − β)t + C (2)

where C is a constant that should be determined with initial condition C = N(0).

Immigration Emigration

N

It is obvious that the population size linearly increases when immigration rate is larger than emi-
gration rate, α > β, and it linearly decreases when α < β. In the latter case N continues to decline
and it could be negative. But in biological sense “negative” population size makes no sense and we
should interpret that the population size N has reached and remain zero, i.e., no individuals can
emigrate from an empty population.
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This is a deterministic model of immigration and emigration. This is “deterministic” because once
initial condition N(0) is given, the dynamics of N(t) is uniquely determined as the solution (2).
Here the population size should be interpreted as “density”, not the number of individuals as
integer. We now want to derive a stochastic model that corresponds to this deterministic model.

2 A stochastic model

There are a number of ways that extend the deterministic model into stochastic model. The immi-
gration rate α and emigration rate β could be random variables associated with certain distributions.
In this case the equation (1) becomes a stochastic differential equation because the parameter α and
β themselves vary stochastically. Analysis of such a stochastic differential equation is not simple
and we look for another way of extending the deterministic model.

In the immigration and emigration process, it would make sense to assume that the immigration
rate α is the probability that an individual immigrates into the population within a short time
interval ∆t and that the emigration rate β the probability that an individual goes out of the
population.

This stochastic process is summarized as follows. With probability α∆t, an individual joins the
population and the population size is increased by one. With probability β∆t, an individual goes
out of the population and the population size is decreased by one. In this formulation the population
size is “integer”, not density represented by floating point number. This stochastic process is easily
implemented using the following rule.

An event A that occurs with probability P

is equivalent to

1) Generate a random number X that distributes uniformly between 0 and 1.
2) If X < P , we assume the event A has occurred. Otherwise, the event A did not occur.

We also assume that the change of the population size within time interval ∆t is at most ±1.
This means that only one of the following three cases occurs mutually exclusively during ∆t; 1) an
individual joins, 2) an individual quits, 3) no change, with probability α∆t, β∆t, 1 − α∆t − β∆t,
respectively. This would be satisfied if we assume the interval ∆t is so small that the population
size changes ±1.

According to the above rule, 1) we draw a uniformly distributed random number X, 2) If X falls
between 0 and α∆t the population size is incremented by one, or 3) If X falls between α∆t and
α∆t + β∆t, it is decremented by one, and 4) Otherwise, the population size does not change.

Here is an outline of the program that simulates this stochastic process.
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#define ALPHA 0.3
#define BETA 0.2
#define DT 0.1
#define INTV 10

main()
{

int pop_size; /* population size */
int step; /* for count of time */
double prob1, prob2, rand_uniform; /* for probabilities */

/* initialization of ran2() */

prob1 = ALPHA * DT;
prob2 = BETA * DT;

pop_size = 10; /* initial population size */

for(step=0; step<1000; step++){ /* advance the time by DT */

if( step % INTV == 0)
printf("%d\n", pop_size);

rand_uniform = ran2(seed);
if( rand_uniform < prob1 )

pop_size++;
eise if( prob1 < rand_uniform && rand_uniform < prob1 + prob2 )

pop_size--;

if( pop_size < 0 ) pop_size = 0; /* pop. size cannot be negative */

} /* end of for */

}

3 Waiting time to the next event

We have implemented the stochastic immigration-emigration process using a fixed time interval ∆t
which has been assumed to be small enough. But to what extent should it be small? Ideally we
can set ∆t as small as possible. But practically, setting ∆t small like ∆t = 0.001 needs a large
number of iterations to reach a certain end-time.

A better and more rigorous way to implement such a stochastic process is to introduce “waiting
time” to the next event. When an event occurs randomly at a rate λ (λ times within a unit time
on average), the number of actual events N follows a Poisson process with the parameter λ, i.e.,
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P (N = n) = exp[−λ]λn/n!. The distribution of the waiting time W to the next event, F (w), is

F (w) = Prob(W ≤ w) = 1 − Prob(W > w)
= 1 − Prob(no events in [0, w])
= 1 − exp[−λw]

and the p.d.f. is given as
F ′(w) = f(w) = λ exp[−λw]

That is, the waiting time to the next event is exponentially distributed in Poisson process. The
average of the waiting time is easily calculated as

Tw =
∫ ∞

0
wf(w)dw =

1
λ

It is the inverse of the rate λ and is intuitively reasonable.

In the immigration-emigration process, either immigration (population size incremented by one) or
emigration (population size decremented by one) occurs at the rate α + β. Thus the waiting time
W to any change of population size follows exponential distribution with λ = α + β. Conditional
probability that immigration has occurred is α/(α+β) and that emigration has occurred is β/(α+β).

The new algorithm is

1) Generate a waiting time W and make proceed the time by W .
2) Generate a uniform distributed random number X.
If X < α/(α + β), immigration has occurred. Otherwise, emigration has occurred.

3) Repeat 1) and 2).

In this algorithm, the time proceeds with a variable interval (waiting time). But it is often conve-
nient to output the dynamics of N with a fixed time interval.

4 Simulation

1. Write a C program to carry out the simulation with a fixed time interval ∆t. In the simulation
we start the stochastic process with an initial population size, say, n(0) = 10 and repeat the
dynamics with the same initial condition for several times. The dynamics of the population
size at t = 0, 1, 2, · · · should be written into a file in the following format with a pair of t and
n(t) separated by white space.

Trial 1: 0 n(0) 1 n(1) 2 n(2) · · · 100 n(100)
Trial 2: 0 n(0) 1 n(1) 2 n(2) · · · 100 n(100)
Trial 3: 0 n(0) 1 n(1) 2 n(2) · · · 100 n(100)

...
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2. Using Mathematica, draw the dynamics in figures by reading the time sequence of the popu-
lation size.

3. Write another C program to run the simulation with variable time interval (waiting time).
And compare the dynamics with that of a fixed time interval.
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