Lecture 1: Generating random numbers

Fugo Takasu
Dept. Information and Computer Sciences
Nara Women’s University
takasu@ics.nara-wu.ac.jp

19 April 2006

1 Random variable

A random variable X has an associated probability with it. It can be either discrete or continuous.

An example of a discrete random variable is toss of coin (0 for tail and 1 for head with equal prob-
ability 1/2) and dice (1 through 6 with equal probability 1/6), or anything that follows binomial,
geometric and poisson distribution. Let us now denote the probability of drawing a certain value,
say i, as ;. The it satisfies the following properties.

0<P <1
SR
i
where summation is taken for all possible 7. F; is called probability distribution.

An example of a continuous random variable is the time for which you must be patient in a waiting
line, or anything that follows uniform, exponential and gauss (normal) distribution. For continuous
random variable X, the probability that X lies within a short interval x and x + dx is defined as

Probjz < X < z + dz] = P(x)dx
where P(x) is called probability density function (pdf). It satisfies
0 < P(x)
/ P(x)dx =1

where integral is taken for possible range of x.

Once a probability distribution (for discrete) or a probability density function (for continuous) is
given, the expected value (mean, average) and the variance of the random variable are calculated
as follows.

For discrete random variable,
EX] =) ixP,
i

Var[X] = E[(X — E[X])*] = } (i — E[X])” x P,

i

For continuous random variable,
E[X] = /g; « Px)dz

Var[X] = E[(X — E[X])?] = /(:z: —E[X])? x P(z)dx

Variance can also be calculated as

Var[X] = E[X?] — E[X]?

Here below I list some continuous random variables often used in many sciences.

1.1 Uniform random variable

An uniform random variable X takes a value x within a certain range with equal probability. Let
the range be a < x < b. Then the probability density function (pdf) is given as
Pla)= —— for a<z<b
) = or a<ux
b—a
=0 otherwise

And naturally f: P(z)dz = 1. Derive the expected value and the variance. Try.

1.2 Exponential random variable

An exponential random variable X takes a non-negative value x (0 < x < o). The pdf contains a
parameter v > 0 and it is defined as

P(x) = v exp[—yz]

Confirm that fooo P(z)dz = 1. Derive the expected value and the variance.

1.3 Gauss random variable

A gauss random variable (Gaussian) X takes a value z (—oo < 2 < 00). The pdf is

Py = |22

and it contains two parameters m and o. This pdf is often presented as N (m, c?). m is the expected
value and o2 is the variance.

1.4 Exercise

1. Derive the expected value and the variance of an uniform random variable X whose range is
a< X <b.

2. Derive the expected value and the variance of an exponential random variable X whose pdf
is given as P(z) = yexp[—~yx].

3. Check that the expected value and the variance of a random variable X that follows N (m, o?)

is m and o2, respectively, i.e., [*_ zP(z)dz =m and [2?P(z) — m? = o°.

2 Generating random numbers

Most part of this session follows “Numerical Recipes in C”, a popular book for introducing nu-
merical methods using C languages. The content can be obtained for free from the web site
http://www.library.cornell.edu/nr/bookepdf.html.

Among the three random variables listed above, the uniform random variable is most important
because the other two random variable can be derived and transformed from a uniform random
variable. Let us now focus on an uniform random variable whose range is 0 < = < 1.

2.1 Generating uniform random numbers

There are several algorithms to generate uniform random numbers. But some of them produces
rather poor quality (e.g., built-in random number generator in C). Here we use a function introduced
in the Numerical Recipe as ran2() that returns a real value between 0 and 1 with equal probability.
I have typed the code and it is available for use. Note that any random number generated by some
algorithmic method is nothing more than pseudo random number. But we will not step into a
philosophically deep question “Can any algorithm produce real random number?” any more.

To generate random numbers in most algorithms, we need a “seed” to specify a series of random
numbers. If we start generating a series of random numbers with the same seed, we have always
the same series of random numbers.

Example of series of random numbers generated using the same seed value.

Trial 1: {0.201669,0.411992,0.146775,0.236965, 0.773501, ... }
Trial 2: {0.201669,0.411992,0.146775,0.236965,0.773501, ... }

Trial 3: {0.201669,0.411992,0.146775,0.236965, 0.773501, ...}

This doesn’t make sense in simulation except for debugging program. For choosing a different seed
value every time simulation is run, the time of run (day, hour, minute, second, which can be readily
obtained in C program) can be a good seed to produce different series of random numbers.

Here is an example how to generate uniform random number (0 < z < 1) in C.

#include <stdio.h>
#include <stdlib.h>
#include <time.h> /* This is necessary to get time */

#define STEP 100
extern double ran2(long); /* ran2() is defined external in another file */

int main(void)
{

long seed; /* seed is long integer */

double randl;
int i;
FILE *fp_uniform;

seed = (long)time(NULL); /* seed should be chosen different for every new trial */

/* Initialize the random generator ran2 with NEGATIVE argument */
ran2(-seed); /* This must be done only once before generating random number! */

printf ("Seed is %1d\n", seed);
fp_uniform = fopen("uniform.out","w");

for(i=0; i<STEP; i++){

/* Uniform random number is generated and returned by calling ran2() */
randl = ran2(seed);

printf ("%f\n", randl)

fprintf (fp_uniform, "%f\n", randl);

fclose(fp_uniform);

return O;

}

2.2 Checking the uniform random numbers

In Mathematica we 1) read a set of random numbers saved in a file, 2) count the number of random
numbers within a certain interval, and 3) make the frequency distribution to see if generated random
numbers reflect original pdf.

In the notebook, we first read a package to do statistics, Statistics'DataManipulation‘ at the begin-
ning. This should be carried out only once after Mathematica is launched. We then designate the
directory where our target file resides using the command SetDirectory. Note that Mathematica’s
commands start with capital letter and they are case sensitive. Below is a sample Mathematica
notebook.

<<Statistics DataManipulation”

In[2]:= SetDirectory["/Volumes/home/Users /takasuy/Random variables
/random variables/build/"]

Out[2]= Volumes home HIREIZERIDMLE #HE FHK1 6 FE

H16 KPFFRi#EE Random variables random variables build

In[3]:= data = ReadList["uniform.out",Reall;
len = Length[datal
maxdata = Max[datal

Out[4]= 10000
Out[5]= 0.999896
In[6]:= dx = 0.1;

categories = 1/dx;
counts = BinCounts[data, {0,maxdata,dx}]
midpoints = Table[x-dx/2, {x,dx,maxdata+dx,dx}];

dist2 = Transpose[{midpoints, counts/len*categories}];

Out[8]= 1006, 984, 959, 979, 1010, 1027, 1018, 987, 1003, 1027
In[13]:= g = ListPlot[dist2,PlotJoined->True, PlotRange->{{0,1},{0,1.5}}]
1.4
1.2
" -
0.8
0.6
0.4
0.2
0.2 0.4 0.6 0.8 1
Out[13]= Graphics
In[14]:= meanUniform = Apply[Plus, datal/len
Out[14]= 0.50279
In[15]:= varianceUniform = Apply[Plus, (data - meanUniform)”*2]/len
Out[15]= 0.0832519
In[16]:= meanUniform = Integrate[x ,{x,0,1}]
1
Out[16]= 5
In[17):= Integrate[(x-meanUniform)”*2,{x,0,1}]
1
Out[17]= 12

2.3 Exercise

1. Complete a C program that generates 100 uniform random numbers. Write the series of
random numbers into a file.

2. By viewing the saved file, check and judge if these numbers follow uniform distribution. Does
the simulated distribution look uniform if we increase the number of random numbers to
1000, or more?

