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1 Analysis of the stochastic process of logistic growth

We have implemented the stochastic logistic growth process in a C program and confirmed that
the stochastic dynamics exhibits a feature that is similar to the deterministic logistic growth.
The process is that for N individuals (N is now non-negative integer), 1) a new individual is
born with probability birth(N)∆t, 2) the individual dies and is removed from the population
with probability death(N)∆t, and 3) the individual neither gives birth nor dies with probability
1 − birth(N)∆t − death(N)∆t. The birth and death rate, birth(N) and death(N), are given as
some functions of the population size N . In this lecture we explore the stochastic dynamics from
analytic viewpoint.

2 Master equation

We assume that the time interval ∆t is so small that the change of the population size n during
the interval is at most ±1, i.e., transition to a state n is possible either from n− 1 or n+1 (n ≥ 1).
Then the probability that the population size is n at time t + ∆t, Pn(t + ∆t), is given as

Pn(t + ∆t) =Pn(t) {1 − birth(n)n∆t − death(n)n∆t}
+ Pn−1(t)birth(n − 1)(n − 1)∆t + Pn+1(t)death(n + 1)(n + 1)∆t

(1)

As in the birth and death process, transition from n = 0 to n = 1 is now impossible. This means
that empty (extinct) population cannot produce offspring anymore. The boundary n = 0 is an
absorbing boundary that separates positive and negative region of n. By assuming that Pn(t) for
negative n is always zero, equation (1) is valid for all integers of n.

Arranging equation (1) and letting ∆t → 0, we obtain

dPn(t)
dt

=birth(n − 1)(n − 1)Pn−1(t) + death(n + 1)(n + 1)Pn+1(t)

− {birth(n) + death(n)}nPn(t)
(2)
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Equation (2) is the master equation of the stochastic logistic growth. Once the functional forms
of birth(n) and death(n) are given, Pn(t) can be solved with a certain initial condition, e.g.,
P0(0) = 1, Pn(0) = 0 for n ≥ 1, but it is in general not easy. In the next section we explore some
properties of the process using moment dynamics.

Hereafter we assume a general case that the per-capita birth rate is a linearly decreasing function
of N and the per-capita death rate is a linearly increasing function of N

birth(N) = b1 − b2N

death(N) = d1 + d2N

where b1, b2, d1, d2 are positive. If b2 = 0 and d2 = 0 this is the birth-death process we learned in
previous lectures.

In deterministic world the birth and death rate assumed above gives the ODE

dN

dt
= {b1 − d1 − (b2 + d2)N}N

= (b1 − d1)

(
1 − N

b1−d1
b2+d2

)
N

This is a logistic growth with the intrinsic rate of increase r = b1 − d1 and the carrying capacity
K = (b1 − d1)/(b2 + d2).

3 Moment dynamics

From the master equation we now try to derive moment dynamics, especially of the first and the
second moment. The master equation is now

dPn(t)
dt

= {b1 − b2(n − 1)} (n − 1)Pn−1(t)

+ {d1 + d2(n + 1)} (n + 1)Pn+1(t)
− {b1 − b2n + d1 + d2n)}nPn(t)

(3)

We multiply equation (3) with n and taking summation for n we have

d

dt
〈n〉 =

∞∑
0

{b1 − b2(n − 1)}n(n − 1)Pn−1(t)

+
∞∑
0

{d1 + d2(n + 1)}n(n + 1)Pn+1(t)

−
∞∑
0

{b1 − b2n + d1 + d2n)}n2Pn(t)

=(b1 − d1)〈n〉 − (b2 + d2)〈n2〉

(4)
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Note that the second moment 〈n2〉 appears in the ODE of the first moment.

In the same way we multiply equation (3) with n2 and taking summation for n we have

d

dt
〈n2〉 =

∞∑
0

{b1 − b2(n − 1)}n2(n − 1)Pn−1(t)

+
∞∑
0

{d1 + d2(n + 1)}n2(n + 1)Pn+1(t)

−
∞∑
0

{b1 − b2n + d1 + d2n)}n3Pn(t)

=(b1 + d1)〈n〉 + (2b1 − b2 − 2d1 + d2)〈n2〉 − 2(b2 + d2)〈n3〉

(5)

Note again that the third moment 〈n3〉 appears in the ODE of the second moment.

We have derive the first and second moment dynamics as follows.

d

dt
〈n〉 = (b1 − d1)〈n〉 − (b2 + d2)〈n2〉 (6)

d

dt
〈n2〉 = (b1 + d1)〈n〉 + (2b1 − b2 − 2d1 + d2)〈n2〉 − 2(b2 + d2)〈n3〉 (7)

These two equations are not closed with respect to 〈n〉 and 〈n2〉 and they cannot be solved without
the knowledge of 〈n3〉. But we will find that the ODE for the third moment contains the fourth
moment, the ODE for the fourth moment contains the fifth, · · · and we cannot derive a set of
ODE in a closed form. This is a general property when birth(N) and death(N) are function of N ,
i.e., transition probability becomes non-linear. Then how can we solve the dynamics? One way to
resolve this problem is to derive an approximation with an assumption that higher-order moment
be given as some function of lower-oder moment. But we will not step into such details further
here.

Remember that V ar[n] = 〈n2〉 − 〈n〉2, then equation (6) can be arranged as

d

dt
〈n〉 = (b1 − d1)〈n〉 − (b2 + d2)〈n2〉

= (b1 − d1)〈n〉 − (b2 + d2)〈n〉2 − (b2 + d2)V ar[n]

= (b1 − d1)

(
1 − 〈n〉

b1−d2
b2+d2

)
〈n〉 − (b2 + d2)V ar[n]

(8)

We find in equation (8) that the dynamics of the first moment 〈n〉, or the expected value of popula-
tion size n (ensemble average of n), obeys a dynamics that is no longer logistic growth because of the
additional term in the right hand side (V ar[n] ≥ 0). Although we have not yet determined V ar[n]
this is a remarkable result we have never observed in the previous models of immigration-emigration
and birth-death where the first moment dynamics obeys the same deterministic dynamics.

In the previous models, we obtained the dynamics of the first moment that is exactly the same as
the corresponding deterministic dynamics. But in the stochastic logistic growth where birth(N)
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and death(N) depend on N , we no longer have such coincidence. This is typical to cases when
transition probabilities n → n+1, n, n−1 are non-linear with respect to n. Transition probabilities
in immigration-emigration and birth-death models are linear so that the deterministic dynamics
and the first moment dynamics exactly match with each other (Table).

Prob[n → n + 1] Prob[n → n − 1] Prob[ n → n]
Immigration-emigration α∆t β∆t 1 − α∆t − β∆t
Birth-death βn∆t δn∆t 1 − βn∆t − δn∆t
Logistic (b1 − b2n)n∆t (d1 + d2n)n∆t 1 − (b1 − b2n)n∆t − (d1 + d2n)n∆t

In the simulation of the logistic process we found that the ensemble average of the population size
E[n] and the variance of population size V ar[n] are eventually stabilized at certain levels (this is
actually a quasi-stationary state, not a true stationary state as we will see in the next lecture). If
the ensemble average and variance of population size converge to constant, ne, and σ2

e , respectively,
they should satisfy equation (8) with the time derivative be zero

0 = (b1 − d1)

(
1 − ne

b1−d2
b2+d2

)
ne − (b2 + d2)σ2

e

This is a quadratic equation of ne and we can solve ne as follows if the variance is small enough

ne =
b1 − d1

b2 + d2
− b2 + d2

b1 − d1
σ2

e (9)

where we used an approximation
√

1 + x ≈ 1 + x/2 when x ¿ 1.

In the deterministic logistic growth the population size converges to the carrying capacity

K =
b1 − d1

b2 + d2

but equation (9) shows that the equilibrium ensemble average E[n] in the stochastic logistic growth
ne is lowered by the amount proportional to the variance V ar[n] at equilibrium σ2

e .

ne = K − b2 + d2

b1 − d1
σ2

e (10)

We have not yet determined the dynamics of the variance V ar[n] because it contains the third
moment and the dynamics of the third moment contains the fourth moment, and the fourth moment
contains the fifth, · · · . In the next section we see how much the variance will be.

4 Linear approximation

In the logistic process, the transition probability Prob[n → n+1] and Prob[n → n−1] is (b1−b2n)n
and(d1+d2n)n, respectively. The former is concave and the latter is convex and these are non-linear
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function of n. Due to the non-linearity we could not derive moment dynamics in a closed form.
We now linearlize these functions around a state at which both the probabilities, (b1 − b2n)n and
(d1 + d2n)n, equal, i.e., at n = n∗ = (b1 − d1)/(b2 + d2) = K. Note that K is the carrying capacity
of the deterministic logistic model.

Pop. size n

Prob[n to n–1]

Prob[n to n+1]

n*

We focus on an approximated stochastic process where the transition probabilities, Prob[n → n+1]
and Prob[n → n − 1], are linear function of n. Let the slope of (b1 − b2n)n at n = n∗ be A and
that of (d1 + d2n)n be B. Then the linearized (approximated) transient probabilities are given as

(b1 − b2n)n ≈ A(n − K) + C (11)
(d1 + d2n)n ≈ B(n − K) + C (12)

where

A =
−b1b2 + b1d2 + 2b2d1

b2 + d2

B =
2b1d2 + b2d1 − d1d2

b2 + d2

C =
(b1 − d1)(b2d1 + b1d2)

(b2 + d2)2

We expect that this linearization will work successfully if deviation from K is not large (variance,
or standard derivation, is small relative to K).

Based on the linearized transient probabilities we construct master equation of the approximated
linear system.

dPt(t)
dt

= (A(n − 1 − K) + C)Pn−1 + (B(n + 1 − K) + C)Pn+1

−(A(n − K) + C + B(n − K) + C)Pn

(13)

From this master equation the first moment dynamics is derived as

d〈n〉
dt

= (A − B)〈n〉 − (A − B)K

= (b1 − d1)(K − 〈n〉)
(14)
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This is easily solved and we see 〈n〉 → K if b1 > d1.

In the same way the second moment dynamics is obtained after some calculus.

d〈n2〉
dt

= 2(A − B)〈n2〉 + (A + B − 2KA − 2KB)〈n〉 − (A + B)K + 2C (15)

Using the relationship V ar[n] = 〈n2〉 − 〈n〉2, we derive the dynamics of the variance

d

dt
V ar[n] = 2(A − B)V ar[n] + (A + B)〈n〉 − (A + B)K + 2C (16)

ODE (16) can be readily solved, but if the variance converges to a constant σ2
e , it must satisfy

0 = 2(A − B)σ2
e + (A + B)K − (A + B)K + 2C

= 2(A − B)σ2
e + 2C

because 〈n〉 → K in this linear process.

The variance at quasi-equilibrium is then

σ2
e =

C

B − A
=

b1d2 + b2d1

(b2 + d2)2
(17)

Remember that this is derived from the approximated linear process and is not exact evaluation of
the variance. But we will see this gives good estimate of the variance of the logistic process.

5 Problem

1. Carry out simulation with appropriate parameter values of b1, b2, d1, d2 to see if the simulation
is in good agreement with the analytical results in terms of the variance (equation 10 and
17).
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