
Passage 24 A #3

How does a population grow in size? - A 
mathematical approach
◼ Geometric growth

Let Nt represent the population size at time t. If the population increases by 1% annually, the size at 
time t+1, Nt+1, is given by

Nt+1 = Nt + 0.01 Nt = 1.01 Nt (1)

This is a difference equation that relates Nt to Nt+1. We know that the solution is given by

Nt = N0 1.01t (2)

using the initial population size at t = 0, N0. This is a “geometric” sequence with the common ratio 
1.01. 

In general, if the population increases by a% annually, the size Nt+1 follows

Nt+1 = Nt + a /100 Nt = (1 + a /100)Nt (3)

and the solution is

Nt = N0 rt (4)

with the commom ration is r. We know that if a > 0 and r > 1, Nt exponentially increases. If a < 0 and 
0 < r < 1, it exponentially decreases to zero.

Assume a population where each individual gives birth to a certain number of offspring and survives 
a unit time (one year) with a certain survival probability. We ignore sex (male and female). Just 
assume a population of such as bacteria that proliferate by divding themselve into several new 
individuals per unit time.

Then the population size at time t+1, Nt+1, is given by

Nt+1 = b Nt + s Nt (5)

where the first term in the right hand side represents the number of new offspring recruited into the 
population in the next time step and the second term represents the number of individuals who 
survive one unit time. 

b is the number of offspring that survives to the next year per individual and s is the survival probabil-
ity per unit time. This difference equation can be written as

Nt+1 = r Nt (6)

as r = b + s.
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ity per unit time. This difference equation can be written as

Nt+1 = r Nt (6)

as r = b + s.

The above equation (5) can be rearranged as

ΔN = Nt+1 - Nt= b Nt + s Nt - Nt = b Nt - (1 - s)Nt (7)

Thus, the net change in the pouplation size N between successive times, ΔN, is given by the 
increase by birth minus the decrease by death. Note that 1 - s represents the probability of death.

ΔN being positive means that the population increases, and it being negative means it decreases. In 
other words, b + s – 1 > 0 means increase and b + s - 1 < 0 means decrease; the same condition as 
r = b + s > 1 or r < 1.

Now let’s see how a geometric sequence looks like.

Example 0 : Exponential model

Let' s set r to be 1.05, i.e., the population increases by 5% every year (Annual growth rate is 5%).

In[1]:= fn[x_] := r x /. r → 1.05

In[2]:= fn[1]

Out[2]= 1.05

In[3]:= data = NestList[fn, 1, 50]

Out[3]= {1, 1.05, 1.1025, 1.15763, 1.21551, 1.27628, 1.3401, 1.4071, 1.47746, 1.55133,
1.62889, 1.71034, 1.79586, 1.88565, 1.97993, 2.07893, 2.18287, 2.29202,
2.40662, 2.52695, 2.6533, 2.78596, 2.92526, 3.07152, 3.2251, 3.38635, 3.55567,
3.73346, 3.92013, 4.11614, 4.32194, 4.53804, 4.76494, 5.00319, 5.25335,
5.51602, 5.79182, 6.08141, 6.38548, 6.70475, 7.03999, 7.39199, 7.76159,
8.14967, 8.55715, 8.98501, 9.43426, 9.90597, 10.4013, 10.9213, 11.4674}

In[4]:= ListPlot[data, Joined → True, PlotMarkers → Automatic, AxesLabel → {"t", "N_t"}]

Out[4]=
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In[5]:= ListLogPlot[data, Joined → True,
PlotMarkers → Automatic, AxesLabel → {"t", "N_t in log scale"}]

Out[5]=
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IMPORTANT: Geometric population growth is translated to a straight line when plotted in the logarith-
mic scale against time t, or a linear function of t.

This can be shown as follows. Take logarithm of both the sides of eq. (3)

log Nt = log N0 rt = log N0 + log rt= log N0+ t log r

Therefore, log Nt is a linear function of time t, i.e., a straight line with the slope log r when plotted 
against time t.

In[6]:= dataLog = Log[data]

Out[6]= {0, 0.0487902, 0.0975803, 0.14637, 0.195161, 0.243951, 0.292741, 0.341531,
0.390321, 0.439111, 0.487902, 0.536692, 0.585482, 0.634272, 0.683062, 0.731852,
0.780643, 0.829433, 0.878223, 0.927013, 0.975803, 1.02459, 1.07338, 1.12217,
1.17096, 1.21975, 1.26854, 1.31733, 1.36612, 1.41491, 1.4637, 1.5125, 1.56129,
1.61008, 1.65887, 1.70766, 1.75645, 1.80524, 1.85403, 1.90282, 1.95161, 2.0004,
2.04919, 2.09798, 2.14677, 2.19556, 2.24435, 2.29314, 2.34193, 2.39072, 2.43951}

In[7]:= ListPlot[dataLog, PlotMarkers → Automatic,
Joined → True, AxesLabel → {"t", "Log N_t"}]

Out[7]=
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If we know the slop of the straight line in the logarithmic scale, we can obtain the common ration r 
from the slope.
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In[8]:= Fit[dataLog, {1, t}, t]

Out[8]= -0.0487902 + 0.0487902 t

In[9]:= Exp[0.0487902]

Out[9]= 1.05

In[10]:= Log[1.05]

Out[10]= 0.0487902

Example 1: Collared doves

The doves brought in England as a pet increased from 4 to 18,855 in 10 years.     

Log of the population size almost linearly increases with the slope 0.978. This means that the doves 
increased nearly exponentially with the common ratio e^0.978 = 2.66 every year.

Example 2 : A pheasant population in an island 

Lack (1954) observed the number of pheasants in an island as follows.

In[11]:= data =

{{1937, 1938, 1939, 1940, 1941, 1942}, {8, 30, 81, 282, 705, 1325}} // Transpose

Out[11]= {{1937, 8}, {1938, 30}, {1939, 81}, {1940, 282}, {1941, 705}, {1942, 1325}}
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In[12]:= ListPlot[data, PlotMarkers → Automatic, AxesLabel → {"Year", "Pop size"}]

Out[12]=
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In[13]:= ListLogPlot[data, PlotMarkers → Automatic]

Out[13]=

●

●

●

●

●

●

1938 1939 1940 1941 1942

10

50

100

500

1000

In logarithmic scale, it almost linearly increases with time t. Let’s examine the slope of the line.

In[14]:= dataPopSize = {8, 30, 81, 282, 705, 1325}

Out[14]= {8, 30, 81, 282, 705, 1325}

In[15]:= dataPopSizeLog = Log[dataPopSize]

Out[15]= {Log[8], Log[30], Log[81], Log[282], Log[705], Log[1325]}

In[16]:= gLog = ListPlot[dataPopSizeLog, PlotMarkers → Automatic]

Out[16]=
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We can obtain the slope by "regression analysis", a method of statistics.
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In[17]:= reg = Fit[dataPopSizeLog, {1, t}, t]

Out[17]= 1.25068 + 1.0362 t

In[18]:= gReg = Plot[reg, {t, 1, 6}]

Out[18]=
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In[19]:= Show[gLog, gReg]

Out[19]=
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In[20]:= Coefficient[reg, t]

Out[20]= 1.0362

In[21]:= Exp[Coefficient[reg, t]]

Out[21]= 2.81849

The pheasant in the island increased roughly exponentially with the common ratio 2.82.

Example 3 : Survival of robins

Lack (1965) observed how robins survived for several years and the result is shown as follows.     

In[22]:= dataNumAlive = Transpose[{{0, 1, 2, 3, 4}, {129, 49, 20, 8, 2}}]

Out[22]= {{0, 129}, {1, 49}, {2, 20}, {3, 8}, {4, 2}}
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In[23]:= ListPlot[dataNumAlive, PlotMarkers → Automatic,
AxesLabel → {"Time (Years)", "Num indivs"}]

Out[23]=
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In[24]:= dataPercentageAlive = Transpose[{{0, 1, 2, 3, 4}, {129, 49, 20, 8, 2} / 129}]

Out[24]= {0, 1}, 1,
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In[25]:= ListPlot[dataPercentageAlive, PlotMarkers → Automatic,
AxesLabel → {"Time (Years)", "Percentage Alive"}]

Out[25]=
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In[26]:= dataPercentageAliveLog = Transpose[{{0, 1, 2, 3, 4}, Log[{129, 49, 20, 8, 2} / 129]}]

Out[26]= {0, 0}, 1, -Log
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In[27]:= g1 = ListPlot[dataPercentageAliveLog, PlotMarkers → Automatic,
AxesLabel → {"Time (Years)", "Percentage Alive"}]

Out[27]=
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In[28]:= fitted = Fit[dataPercentageAliveLog, {1, t}, t]

Out[28]= 0.0733202 - 1.01457 t
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In[29]:= g2 = Plot[fitted, {t, 0, 4}]

Out[29]=
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In[30]:= Show[g1, g2]

Out[30]=
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In[31]:= Exp[-1.01457]

Out[31]= 0.362558

Annual survial probability of robins is 0.36.

◼ Doubling time
For an exponential population growth, we can define the time necessary for the population size to 
be doubled. This is called "doubling time". Doubling time TBcan be solved as follows.

Nt+T = N0 rt+T = 2 Nt = 2 N0 rt

From this, the doubling time T = log 2 / log r

When r = 1.05 as above, the double time T = log 2/log 1.05

In[32]:= Log[2] / Log[1.05]

Out[32]= 14.2067

It takes about 14 years for the exponential growht with common ration r = 1.05 per year (annual 5% 
increase).

◼ Half life
For an exponential population decline we can define the time necessary for the population size to be 
halved. This is called “half life". Half life TH can be solved as follows.

Nt+T = N0 rt+T = Nt /2 = N0 rt/2

From this, half life T = -log 2 / log r
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For an exponential population decline we can define the time necessary for the population size to be 
halved. This is called “half life". Half life TH can be solved as follows.

Nt+T = N0 rt+T = Nt /2 = N0 rt/2

From this, half life T = -log 2 / log r

When r = 0.95, the half life T = -log 2/log 0.95

In[33]:= -Log[2] / Log[0.95]

Out[33]= 13.5134

It takes about 13.5 years for the exponential decline with common ration r = 0.95 per year (5% 
decline annually).

Questions
Annual growth rate of the world population in 2015 is estimated as 1.07 %. If this rate is kept con-
stant, how long will it take for the world population to be doubled, e.g., from 7.3 billion to 14.6 billion?

In[34]:= CountryData["World", "Population"]

Out[34]= 7.13001 × 109 people

In[35]:= Log[2] / Log[1.0107]

Out[35]= 65.1261

Annual growth rate of Bangladesh population in 2015 is estimated as 1.61 %. If this rate is kept 
constant, how long will it take for Bangladesh population to be doubled, e.g., from 156 million to 312 
million?

In[36]:= CountryData["Bangladesh", "Population"]

Out[36]= 156380192 people

In[37]:= Log[2] / Log[1.0161]

Out[37]= 43.3983

Annual growth rate of Japanese population in 2015 is estimated as -0.17%. If this rate is kept 
constant, how long will it take for Japanese population to be halved e.g., from 126 million to 63 
million?

In[38]:= CountryData["Japan", "Population"]

Out[38]= 126225259 people

In[39]:= -Log[2] / Log[0.9983]

Out[39]= 407.387

Data from the United States Census Bureau : 
http : // www.census.gov/population/international/data/idb/region.php?N = %20 Results %20 & T = 
11 & A = both & RT = 0 & Y = 2016 & R = 1 & C =
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