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1 Analysis of the stochastic process using generating function

The master equation for the stochastic birth-death process was given as follows.

dPn(t)
dt

= β(n − 1)Pn−1(t) + δ(n + 1)Pn+1(t) − (β + δ)nPn(t) (1)

where the range of n is all integers and the probability for negative n is assumed to be zero
(Pn(t) = 0 for n < 0 for non-negative initial population size n(0) > 0).

We have derived the first and the second moment dynamics and seen that the simulations result
in good match with the analytic equations of the first and second moments. Now we try to solve
the probability Pn(t) explicitly using probability generating function as we did for immigration-
emigration process.

2 Solving the pgf

Remember that probability generating function for a probability distribution Pn(t) is defined as

G(t, z) =
∑

n

Pn(t)zn (2)

Differentiating equation (2) with respect to t yields

∂

∂t
G(t, z) =

∑
n

∂

∂t
Pn(t)zn

Using the master equation (1) we have

∂

∂t
G(t, z) = β

∑
n

(n − 1)Pn−1(t)zn + δ
∑

n

(n + 1)Pn+1(t)zn − (β + δ)
∑

n

nPn(t)zn

= β
∑

n

nPn(t)zn+1 + δ
∑
n

nPn(t)zn−1 − (β + δ)
∑

n

nPn(t)zn
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Here we re-indexed the summation.

We now remember
∂

∂z
G(t, z) =

∑
n

nPn(t)zn−1

and we finally have a partial differential equation of G(t, z).

∂

∂t
G(t, z) =

{
βz2 − (β + δ)z + δ

} ∂

∂z
G(t, z) (3)

This should be solved using initial and boundary condition. If we start the stochastic process with
N(0) individual at time t = 0, the initial condition is Pn(0) = 0 for n ̸= N(0) and PN(0)(0) = 1,
i.e.,

G(0, z) =
∑

n

Pn(0)zn = zN(0) (4)

The boundary condition determines G(t, 0) and G(t, 1) and it is expressed as

G(t, 0) = P0 (5)

G(t, 1) =
∑

n

Pn(t) = 1 (6)

where P0 is undetermined at this moment.

Solving Pn(t) is now reduced to solving the partial differential equation of G(t, z) (3) with condition
(4), (5) and (6). This partial differential equation is called Lagrange type and it can be solved
explicitly with messy calculus as follows. See Appendix for how to solve Lagrangian type PDE.

We re-arrange the partial differential equation (3) as

∂

∂t
G(t, z) − (z − 1)(βz − δ)

∂

∂z
G(t, z) = 0 (7)

First we think of the auxiliary equation of (7).

dt

1
= − dz

(z − 1)(βz − δ)
=

dG

0

We can integrate the first equation by expanding (when β ̸= δ)

−dt =
dz

(z − 1)(βz − δ)
=

1
(β − δ)

(
1

z − 1
− β

βz − δ

)
dz

to yield

−t =
1

β − δ
(log |z − 1| − log |βz − δ|) + c1

From the second equation we see dG = 0 and have

G = c2
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Then the general solution of (7) is given as

G(t, z) = F ((β − δ)t + log |z − 1| − log |βz − δ|)

F can be any function of (β − δ)t + log |z − 1| − log |βz − δ|. This can be re-arranged as

G(t, z) = H(w)

where H can be any function of

w = e(β−δ)t z − 1
βz − δ

(8)

We look for H that satisfies the initial and boundary condition G(0, z) = zN(0) and G(t, 1) = 1.
When t = 0

w =
z − 1
βz − δ

and this leads to
z =

δw − 1
βw − 1

Substituting this into the initial condition (4)

G(0, z) = H(w|t=0) = zN(0)

yields

G(0, z) = H(w|t=0) =
(

δ w|t=0 − 1
β w|t=0 − 1

)N(0)

(9)

Now we have determined the functional form of H.

In equation (8) w = 0 for t ≥ 0 when z = 1. Therefore G(t, z) = H(w) satisfies the boundary
condition (6), G(t, 1) = H(0) = 1 for t ≥ 0. With the uniqueness of solution of PDE, we have
solved the solution G(t, z) and it is

G(t, z) = H(w)

=
(

δw − 1
βw − 1

)N(0)

=

{
δe(β−δ)t z−1

βz−δ − 1

βe(β−δ)t z−1
βz−δ − 1

}N(0)

=

{
(z − 1)δe(β−δ)t − βz + δ

(z − 1)βe(β−δ)t − βz + δ

}N(0)

(10)

The probability of population size n at time t, Pn(t), is obtained by Taylor expanding G(t, z)
around z = 0. We also should have the same moment dynamics from G(t, z) as we derived directly
from the master equation. Derivation is left to readers as an exercise.
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3 Probability of extinction

From the definition of probability generating function G(t, z), the probability of extinction (popu-
lation size n = 0) at time t, P0(t), is given by G(t, 0). In the birth-death process it is

P0(t) = G(t, 0) =

(
−δe(β−δ)t + δ

−βe(β−δ)t + δ

)N(0)

If β > δ

P0(t → ∞) =
(

δ

β

)N(0)

< 1 (11)

Otherwise (β < δ)
P0(t → ∞) = 1 (12)

It is natural that the population eventually goes extinct always (with probability 1) if the birth
rate is less than the death rate (β < δ). Contrary, however, it is counter-intuitive to us that even
if the birth rate is larger than the death rate (β > δ) the population can go extinct with non-
zero probability (δ/β)N(0). This behavior is very different from the corresponding deterministic
dynamics where extinction never occurs when β > δ. In stochastic process the probability of
extinction is always positive because unlucky events can occur consecutively and population can
be trapped at n = 0. Population is never free from extinction in the stochastic world.

From (11) we see that the probability of extinction becomes prominent when 1) initial population
size N(0) is small, or 2) birth rate is larger than but close to death rate. This effect is called
demographic stochasticity which is caused by individuals’ stochastic breeding and death. From
a conservation view point, a small-sized population faces a great risk of extinction simply because
the number of individuals is small. Such a population can easily go extinct due to the demographic
stochasticity (if birth and death of individuals are stochastic event, which is in most cases true in
the wild).

4 Problem

1. Using appropriate parameter values and initial population size, run the simulation many times
and compare the probability of extinction with the analytical result (11). We run simulation
many times, say 1000, and write the population size n(500) into a file and count how many
trials ended with population size n = 0.

2. Derive the first moment dynamics from the p.g.f. G(t, z) we solved as equation (10). Is it the
same as we derived from the master equation?
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5 Appendix: Lagrangian partial differential equation

A partial differential equation for a function u(x1, x2) is Lagrange type if it takes the form

P1(x1, x2, u)
∂u

∂x1
+ P2(x1, x2, u)

∂u

∂x2
= R(x1, x2, u)

where P1, P2, R are functions of x1, x2, u.

We can solve this partial differential equation using auxiliary equation

dx1

P1
=

dx2

P2
=

du

R

If we can obtain two independent solutions of the auxiliary equation as

f1(x1, x2, u) = c1, f2(x1, x2, u) = c2

then the general solution of the Lagrange type PDE is given as

F (f1(x1, x2, u), f2(x1, x2, u)) = 0

where F is an arbitrary analytical function. Or in explicit form by solving this general solution for
u,

u = G(x1, x2)

is the general solution.

5.1 Examples

Consider a PDE
∂z

∂x
+

∂z

∂y
= 1

The auxiliary equation is
dx

1
=

dy

1
=

dz

1
From the first equation we have dx = dy and we find x − y = c1 is the solution. In the same way
the solution of the second equation is y − z = c2. Then the general solution of the PDE is

F (x − y, y − z) = 0

Or
y − z = G(x − y)

(z = y − G(x − y)) where F and G can be any function.

Consider another PDE
x2 ∂z

∂x
− xy

∂z

∂y
= −y2
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The auxiliary equation is
dx

x2
= −dy

xy
= −dz

y2

From the first equation we have
dx

x
=

dy

−y

By integrating we have the solution xy = c1. From the second equation we have

dy

x
=

dz

y

Substituting x = c1/y yields
y2

c1
dy = dz

and the solution is z = y3/(3c1) + c2 = y2/(3x) + c2 . The the general solution of the PDE is then

F (xy, z − y2

3x
) = 0

Or

z =
y2

3x
+ G(xy)

F and G can be any analytical function.
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