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1 Analysis of the stochastic process of birth and death

In the last lecture we have implemented a stochastic birth and death process in a C program. The
process is that for N individuals (N is now non-negative integer), 1) a new individual is born with
probability β∆t, 2) the individual dies and is removed from the population with probability δ∆t,
and 3) the individual nether gives birth nor dies with probability 1−β∆t−δ∆t where ∆t is a short
time interval. These three events 1), 2), 3), occur mutually exclusively, where ∆t should be small
enough. We also implemented this process using waiting time distributed exponentially.

The population size N as non-negative integer is no longer determined uniquely, but is associated
with a certain probability distribution that evolves with time t. As we did in the immigration-
emigration model we want to look for the probability distribution, i.e., the probability that the
population size is n at time t, Pn(t) where n ≥ 0.

To do this we derive master equation for the probability distribution Pn(t). As we have seen in the
simulation, the state n = 0 is an absorbing state, i.e., once trapped in this state the system remains
unchanged because transition from n = 0 to n = 1 is impossible (offspring cannot be reproduced
from empty). So n = 0 is the boundary that separates n > 0 and n < 0, the former makes biological
sense but the latter not.

2 Master equation

Let us now assume that the time interval ∆t is small enough that the change of the population size
within the time interval, N(t + ∆t) − N(t), is at most ±1, i.e., transition to a state n is possible
either from n−1 or n+1 (n ≥ 1). In the simulation we assumed that each individual can experience
one of the three possible cases listed above. Thus, for n individuals, the probability that there are
n individuals again after ∆t is given as
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Prob[N(t + ∆t) = n|N(t) = n] =
[n/2]∑
i=0

n!
(n − 2i)!i!i!

(1 − β∆t − δ∆t)n−2i(β∆t)i(δ∆t)i

where [x] is the maximum integer that does not exceed x. As ∆t → 0 this transition probability
that population size does not change during ∆t is 1 − βn∆t − δn∆t by ignoring higher orders of
∆t.

In the same way we see that if ∆t is small enough, the transition probability that population size
changes from n − 1 to n can be given as β(n − 1)∆t and that from n + 1 to n as δ(n + 1)∆t.

Then the probability that the population size is n at time t + ∆t, Pn(t + ∆t), is given as

Pn(t + ∆t) = Pn(t)(1 − βn∆t − δn∆t) + Pn−1(t)β(n − 1)∆t + Pn+1(t)δ(n + 1)∆t (1)

Note that transition from n = 0 to n = 1 is now impossible. This means that empty (extinct)
population cannot produce offspring anymore.

Equation (1) is valid for n ≥ 1. For n = 0, we have

P0(t + ∆t) = P0(t) + P1(t)δ∆t (2)

Arranging equation (1) and (2) by letting ∆t → 0, we obtain

dPn(t)
dt

= β(n − 1)Pn−1(t) + δ(n + 1)Pn+1(t) − (β + δ)nPn(t) for n ≥ 1 (3)

dP0(t)
dt

= δP1(t) (4)

The set of equation (3) and (4) is the master equation of the birth-death process. Pn(t) can be
solved with certain initial condition, e.g., when initial population size is 1, P1(0) = 1, Pn(0) = 0
for n ̸= 1. The population size n starting from a positive initial number cannot pass through the
boundary n = 0 and it cannot be negative. So we can assume that Pn(t) for negative n is always
zero. Now equation (4) is naturally derived from equation (3) by setting n = 0.

3 Equilibrium probability distribution

Before solving the master equation, we look for stationary probability distribution. If there exists
an equilibrium probability distribution Pn = Pn(t → ∞), the time derivative of Pn(t) must be zero.

From the master equation we see

0 = δP1 = 0 (5)
0 = β(n − 1)Pn−1 + δ(n + 1)Pn+1 − (β + δ)nPn for n ≥ 1 (6)

From equation (5) we have
P1 = 0
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and substituting this to equation (6) with n = 1 yields

P2 = 0

Repeating this shows a general rule
Pn = 0

for n ≥ 1.

Now remember that Pn is probability distribution and it must sum up to 1

∞∑
n=0

Pn = 1

From this we see that P0 = 1, Pn = 0 (n ≥ 1) is an equilibrium distribution (population finally
goes extinct). Or if 0 < P0 < 1 there is no equilibrium distribution because the probabilities never
sum up to 1 (population explodes to infinity). In the stochastic birth-death process, population 1)
always goes extinct or 2) it either goes extinct with a certain probability P or explodes to infinity
with probability 1 − P . We will later explore these behavior in details.

4 Moment dynamics

As we did in the immigration-emigration model, we can derive moment dynamics of the birth-death
process from the master equation.

For the first moment dynamics we multiply equation (3) with n and take summation for n =
0, 1, 2, · · ·∞.

d〈n〉
dt

=
∞∑

n=0

{
βn(n − 1)Pn−1(t) + δn(n + 1)Pn+1(t) − (β + δ)n2Pn(t)

}
= β

∞∑
n=1

{
(n − 1)2Pn−1(t) + (n − 1)Pn−1(t)

}
+

δ

∞∑
n=0

{
(n + 1)2Pn+1(t) − (n + 1)Pn+1(t)

}
− (β + δ)

∞∑
n=0

n2Pn(t)

= β
{
〈n2〉 + 〈n〉

}
+ δ

{
〈n2〉 − 〈n〉

}
− (β + δ)〈n2〉

= (β − δ)〈n〉

(7)

Here we used identity
∑

n=0 nPn =
∑

n=1 nPn. This result shows that the ensemble average 〈n〉
obeys the same exponential growth of the deterministic model.

d〈n〉
dt

= (β − δ)〈n〉

If the process starts with the same initial population size, 〈n〉 at t = 0 is equal to N(0) because
Pn(0) = 1 for n = N(0) and Pn(0) = 0 for otherwise. The solution is

〈n〉 = N(0) exp[(β − δ)t] (8)
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This is exactly the same as the solution of the deterministic birth-death process.

In the same way we have the second moment dynamics after tedious calculus.

d〈n2〉
dt

=
∞∑

n=0

{
βn2(n − 1)Pn−1(t) + δn2(n + 1)Pn+1(t) − (β + δ)n3Pn(t)

}
= · · · It would be nice if you ever try to derive this result by yourself · · ·
= 2(β − δ)〈n2〉 + (β + δ)〈n〉

(9)

Substituting equation (8) into equation (9) completes an ordinary differential equation for the
second moment 〈n2〉. If the process starts with the same initial population size N(0), the ODE (9)
can be solved with the initial condition 〈n2〉 = N(0)2 at t = 0.

d〈n2〉
dt

= 2(β − δ)〈n2〉 + (β + δ)〈n〉

See Appendix for how this type of ODE can be solved. The solution is a bit lengthly

〈n2〉 = N(0)
β + δ

β − δ
exp[(β − δ)t] (exp[(β − δ)t] − 1) + N(0)2 exp[2(β − δ)t]

but it turns out that the variance V ar[n] = 〈n2〉 − 〈n〉2 turns out to be a simple form as

V ar[n] = N(0)
β + δ

β − δ
exp[(β − δ)t] (exp[(β − δ)t] − 1) (10)

We have solved the first and the second moment dynamics, both of which would be useful to
understand the behavior of the stochastic birth and death process we have simulated. When β > δ
the average population size exponentially increases 〈n〉 ∝ exp[(β− δ)t]. The variance also increases
roughly exponentially as V ar[n] ∼ exp[2(β − δ)t] for large t. This means that the square root of
variance alias the degree of variation around the average increases in the same order of the average.
This poses a serious problem to predict the behavior of this stochastic process as we will see in the
exercise.

5 Problem

1. Carry out the simulation with appropriate parameter values, e.g., β = 0.03, δ = 0.02, and
check if the simulation is in good agreement with the analytical results in terms of the ensemble
average and the variance (equation (8) and (10)). Does decreasing the interval ∆t result in
better fit?

2. Confirm that the population often goes extinct (population size is trapped in “zero”) when
the death rate δ is close to the birth rate β even when β > δ.

3. The analysis has shown that the square root of the variance increases exponentially in the
same order of the ensemble average. What does this mean in terms of the predictability of
the stochastic dynamics?
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6 Appendix

Solution of a linear differential equation

dx

dt
= p(t)x + q(t)

is given as

x(t) = e
R

p(t)dt

(
C +

∫
e−

R

p(t)dtq(t)dt

)
where C is integration constant which should be determined using initial condition x(0).

How is this derived? If we multiply the original equation with exp[−
∫

p(t)dt], it can be arranged
as

d

dt

(
e−

R

p(t)dtx
)

= e−
R

p(t)dtq(t)

We integrate this equation to have

e−
R

p(t)dtx(t) =
∫

e−
R

p(t)dtq(t)dt + C

which results in the general solution given above.

In the birth-death process starting from a constant initial state N(0), p(t) = 2(β − δ) and q(t) =
(β + δ)〈n〉 = N(0)(β + δ)e(β−δ)t.
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