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1 Equilibrium probability distribution

In the last lecture we have explored the stochastic logistic growth model. The master equation was
given as

dPn(t)
dt

=birth(n − 1)(n − 1)Pn−1(t) + death(n + 1)(n + 1)Pn+1(t)

− {birth(n) + death(n)}nPn(t)
(1)

where the per-capita birth and death rates depend on the population size N as

birth(N) = b1 − b2N

death(N) = d1 + d2N

The state n = 0 is absorbing state and we have assumed that Pn(t) is zero for negative n.

Now we look for the probability distribution Pn(t) in depth. If there exists an equilibrium proba-
bility distribution Pn = Pn(t → ∞), the time derivatives of Pn(t) in the master equation must be
zero. Then we see

0 = (d1 + d2)P1 (2)
0 = 2(d1 + 2d2)P2 − (b1 − b2 + d1 + d2)P1 (3)

0 = {b1 + b2(n − 1)}(n − 1)Pn−1 + {d1 + d2(n + 1)}(n + 1)Pn+1

− (b1 − b2n + d1 + d2n)nPn for n ≥ 2
(4)

From equation (2) we have
P1 = 0

and substituting this to equation (3) yields

P2 = 0
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Repeating this shows a general rule
Pn = 0

for n ≥ 1.

Now remember that Pn is a probability distribution and it must sum up to 1

∞∑
n=0

Pn = 1

Then we see that P0 = 1, Pn = 0 (n ≥ 1) is an equilibrium distribution which means that the
population eventually goes extinct with probability 1 (extinction is inevitable!).

Intuitively we are convinced that the population size cannot explode indefinitely in this logistic
growth model. But it might be counter-intuitive that the population ultimately goes extinct. This
discrepancy could be reasoned as follows. The state n = 0 is absorbing wall and once trapped
in this state the population size remains zero forever. Because the transition to n = 0 from
any positive population size is always possible (with non-zero probability although it could be
extreme low), the population size is gradually absorbed to n = 0 and eventually all populations
are trapped there. The time to extinction can be extremely long once the population size becomes
large enough fluctuating around the equilibrium ne large enough. In this case we might observe
quasi-stationary probability distribution of Pn which can be readily demonstrated by simulation.

2 Time to extinction

In the stochastic logistic growth, extinction is inevitable as shown in the previous section. Although
ultimate extinction is certain, we are curious to know how long it will take for a population to be
extinct. Let τE(N0) be the mean time to extinction of a population whose initial size is N0.

As the transition from N0 is to one of the following three cases, 1) no change, 2) change to N0 + 1,
3) change to N0 − 1, we can derive a difference equation for the mean time to extinction τE(N0) as

τE(N0) =
1

B(N0) + D(N0)
+

B(N0)
B(N0) + D(N0)

τE(N0 + 1) +
D(N0)

B(N0) + D(N0)
τE(N0 − 1) (5)

The fist term on the r.h.s is the mean time spent before the first change occurs (it is the inverse
of the rate of exponential distribution), the second term is that representing the mean time to
extinction when the first change is to N0 +1 and the third term is that the mean time to extinction
when the first change is to N0 − 1.

To solve this difference equation we need τE(0) and τE(1). The fomer is naturally τE(0) = 0 but
the latter τE(1) might be given arbitrary. This equation is readily solved after some algebra (see
Appendix) and it turns out

τE(N0 + 1) − τE(N0) =
∏N0

i=1 D(i)∏N0
i=1 B(i)

{
τE(1) −

N0∑
i=1

qi

}
= F (N0) (6)
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where

qi =
B(1)B(2) · · ·B(i − 1)

D(1)D(2) · · ·D(i)
=

∏i−1
j=1 B(j)∏i
j=1 D(j)

for i ≥ 2

q1 =
1

D(1)

By summing up both the sides of equation (6) we reach

τE(N0) = τE(1) +
N0−1∑
k=1

F (k) (7)

Still τE(1) remains to be determined to obtain the mean time to extinction starting from a popula-
tion of N0. But from equation (6) we might expect that τE(N0+1)−τE(N0) → 0 as we let N0 → ∞
for the following reason. For extremely large N0 it is most likely that death rate D(N0) overwhelms
birth date B(N0) so that we can ignore transition via the state N0 + 1, thus τE(N0 + 1) ≈ τE(N0)
for large N0. Then we have

τE(1) =
∞∑
i=1

qi (8)

As an example, let us assume B(N) = (b1 − b2N)N = b1N and D(N) = (d1 + d2N)N = d2N
2

(b2 = d1 = 0). In this case

qi =
1
b1

(
b1

d2

)i 1
i!i

and

τE(1) =
∞∑
i=1

qi ≈
1
b1

d2

b1
exp

[
b1

d2

]
(9)

Remember that the carrying capacity K in the corresponding deterministic growth was

K =
b1 − b2

d1 + d2

When b2 = d1 = 0, K = b1/d2 and the mean time to extinction when starting from N0 = 1 is

τE(1) ∝ 1
K

exp[K]

This shows that as the carrying capacity K increases the mean time to extinction can be extremely
long.

3 Appendix

We introduce a variable x(N0) = τE(N0) − τE(N0 − 1) and equation (5) is arranged

x(N0 + 1) =
D(N0)
B(N0)

x(N0) −
1

B(N0)

where x(1) = τE(1). Deriving x(2) and x(3) will guide you to the solution candidate equation (6)
and by induction it can be shown as the solution.
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4 Problem

1. Observe in simulation the quasi-stationary distribution Pn as follows. Write the population
size n(t) into a file at t = 500, 1000, 1500, · · · , 5000 and repeat this for many times, e.g., 1000.

Trial 1: n(500) n(1000) n(1500) · · · n(5000)
Trial 2: n(500) n(1000) n(1500) · · · n(5000)
Trial 3: n(500) n(1000) n(1500) · · · n(5000)

...

Using Mathematica observe the quasi-stationary equilibrium of probability distribution Pn

and see that some unfortunate populations can go extinct as time passes. We would have to
choose parameters so that the carrying capacity is not large enough if we are to see populations
eventually go extinct (within your patience).

2. Using appropriate parameter values of b1 and d2 (b2 = d1 = 0), calculate by simulation the
time to extinction starting from initial population size N0 = 1 for many trials. Output the
time into a file when the population size reaches zero. Each output should be separated with
a white space. Read these data in Mathematica and compare the results with the analytical
results of equation (9).
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Stochastic logistic process: Time to extinction

In[1]:= << Graphics`Graphics`

In[2]:= << Statistics`DescriptiveStatistics`

In[3]:= << Statistics`DataManipulation`

In[4]:= SetDirectory@"êUsersêtakasuêhomeê ê ê êH18

êLogistic growth modelêlogistic_modelsêbuildêDevelopmentê"D

Out[4]= êUsersêtakasuêhomeê ê ê êH18

êLogistic growth modelêlogistic_modelsêbuildêDevelopment

In[5]:= data = ReadList@"data-time_extinction", RealD;

Length@dataD

Min@dataD

Max@dataD

Out[6]= 1000

Out[7]= 0.0498

Out[8]= 100000.

In[9]:= Mean@dataD

Out[9]= 12701.3

In[10]:= Histogram@dataD
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Out[10]= Ü Graphics Ü

In[11]:= para = 8b1 Ø 0.2, b2 Ø 0, d1 Ø 0, d2 Ø 0.02<

Out[11]= 8b1 Ø 0.2, b2 Ø 0, d1 Ø 0, d2 Ø 0.02<

In[12]:= carryingCapacity = Hb1 - b2Lê Hd1 + d2L

Out[12]=
b1 - b2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d1 + d2

In[13]:= timeToExtinction = d2ê b1ê b1 Exp@b1 ê d2D

Out[13]=
d2 ‰b1êd2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
b12

Logistic-growth-t_extinction.nb 1

7



In[14]:= carryingCapacity ê. para

Out[14]= 10.

In[15]:= timeToExtinction ê. para

Out[15]= 11013.2

In[16]:= 8carryingCapacity, timeToExtinction< ê. 8b1 Ø 0.2, b2 Ø 0, d1 Ø 0, d2 Ø 0.01<

Out[16]= 820., 1.21291µ 108<

In[17]:= 8carryingCapacity, timeToExtinction< ê. 8b1 Ø 0.2, b2 Ø 0, d1 Ø 0, d2 Ø 0.002<

Out[17]= 8100., 1.34406µ 10
42<

Logistic-growth-t_extinction.nb 2
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